12.1 Worked Example

Get some descriptive stats for the ctDNA data that comes with the package. The nicenames argument is TRUE by default so underscores are replaced by spaces

rm_covsum(data=ctDNA,
          covs=c('cohort','ctdna_status','size_change'))
n=270
cohort
A 50 (19)
B 14 (5)
C 18 (7)
D 88 (33)
E 100 (37)
ctdna status
Clearance 137 (51)
No clearance, decrease from baseline 44 (16)
No clearance, increase from baseline 89 (33)
size change
Mean (sd) -29.7 (52.8)
Median (Min,Max) -32.5 (-100.0, 197.1)
Missing 8

12.1.1 set_labels

If we have a lookup table of variable names and labels that we imported from a data dictionary we can set the variable labels for the data frame and these will be used in the rm_ functions

ctDNA_names <- data.frame(var=names(ctDNA),
                          label=c('Patient ID',
                                  'Study Cohort',
                                  'Change in ctDNA since baseline',
                                  'Number of weeks on treatment',
                                  'Percentage change in tumour measurement'))
ctDNA <- set_labels(ctDNA,ctDNA_names)

rm_covsum(data=ctDNA,
          covs=c('cohort','ctdna_status','size_change'))
n=270
Study Cohort
A 50 (19)
B 14 (5)
C 18 (7)
D 88 (33)
E 100 (37)
Change in ctDNA since baseline
Clearance 137 (51)
No clearance, decrease from baseline 44 (16)
No clearance, increase from baseline 89 (33)
Percentage change in tumour measurement
Mean (sd) -29.7 (52.8)
Median (Min,Max) -32.5 (-100.0, 197.1)
Missing 8

12.1.2 set_var_labels

Individual labels can be changed with with the set_var_labels command

ctDNA <- set_var_labels(ctDNA,
                        cohort="A new cohort label")
rm_covsum(data=ctDNA,
          covs=c('cohort','ctdna_status','size_change'))
n=270
A new cohort label
A 50 (19)
B 14 (5)
C 18 (7)
D 88 (33)
E 100 (37)
Change in ctDNA since baseline
Clearance 137 (51)
No clearance, decrease from baseline 44 (16)
No clearance, increase from baseline 89 (33)
Percentage change in tumour measurement
Mean (sd) -29.7 (52.8)
Median (Min,Max) -32.5 (-100.0, 197.1)
Missing 8

12.1.3 extract_labels

Extract the variable labels to a data frame

var_labels <- extract_labels(ctDNA)
var_labels
##       variable                                   label
## 1           id                              Patient ID
## 2       cohort                      A new cohort label
## 3 ctdna_status          Change in ctDNA since baseline
## 4         time            Number of weeks on treatment
## 5  size_change Percentage change in tumour measurement

12.1.4 replace_plot_labels

This function will accept a ggplot plot and replace the variable names (x-axis, y-axis and legend) with the variable labels. This is useful for more professional looking plots.

library(ggplot2)
p <- ggplot(data=ctDNA,aes(x=ctdna_status,y=size_change,colour=cohort))+
  geom_point()
replace_plot_labels(p)

12.1.5 clear_labels

Or clear them all

ctDNA <- clear_labels(ctDNA)