5 Multivariable analysis
To create a nice display for multivariable models the multivariable model first needs to be fit.
By default, the variance inflation factor will be shown to check for multicollinearity. To suppress this column set vif=FALSE
. Note: variance inflation factors are not computed (yet) for multilevel or GEE models.
glm_fit <- glm(orr~change_ctdna_group+pdl1+age,
family='binomial',
data = pembrolizumab)
rm_mvsum(glm_fit, showN = TRUE, vif=TRUE)
OR(95%CI) | p-value | N | Event | VIF | |
---|---|---|---|---|---|
change ctdna group | 0.006 | 73 | 58 | 1.03 | |
Decrease from baseline | Reference | 33 | 19 | ||
Increase from baseline | 23.92 (2.49, 229.77) | 40 | 39 | ||
pdl1 | 0.97 (0.95, 0.99) | 0.011 | 73 | 58 | 1.24 |
age | 0.94 (0.87, 1.01) | 0.078 | 73 | 58 | 1.23 |
p-values can be adjusted for multiple comparisons using any of the options available in the p.adjust
function. This argument is also available for univariate models run with rm_uvsum.
OR(95%CI) | p-value | N | Event | VIF | |
---|---|---|---|---|---|
change ctdna group | 0.018 | 73 | 58 | 1.03 | |
Decrease from baseline | Reference | 33 | 19 | ||
Increase from baseline | 23.92 (2.49, 229.77) | 40 | 39 | ||
pdl1 | 0.97 (0.95, 0.99) | 0.022 | 73 | 58 | 1.24 |
age | 0.94 (0.87, 1.01) | 0.078 | 73 | 58 | 1.23 |